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Abstract

In four dimensions, the Minkowski metric r)uv=diag(+1,-1,-1,-1) leads to the 16-dimensional Clifford algebra C(1,3), Dirac's equa-
tion [1] is using four of these 16 matrices that form a basis of this algebra, a new operator is defined using all of these matrices
and also generalized for a curved space. This new multilevel operator generalizes the Dirac's equation, the value of the general-
ized Dirac's operator is calculated in the Schwarzschild's metric. The torsion tensor is calculated taking into account the non-
symmetric part of the metric tensor in the vanishing of its covariant derivative and applied to Kerr's metric generalizing the Clif-
ford algebra. Geodesic equation, conservation laws, torsion tensor and Einstein field equation are obtained in a non-symmetric

geometry.
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Introduction

Dirac's equation is the relativistic wave equation derived by
physicist Paul Dirac in 1928. The wave functions in the Di-
rac theory are vectors of four complex components (known
as bispinors), two of which resemble the Pauli wavefunction
in the non-relativistic limit, in contrast to the Schrodinger
equation which described wave functions of only one com-
plex component.

Dirac's operator is just the tip of the iceberg, the tip of a
generalized operator that is obtained by operating on all
members of the Clifford algebra basis and not just on four
of them.

The Schwarzschild's metric is named in honour of Karl
Schwarzschild, who found the exact solution in 1915 and
published it in January 1916, a little more than a month af-
ter the publication of Einstein's theory of general relativity.
It was the first exact solution of the Einstein field equations
other than the trivial at space solution. Schwarzschild died
shortly after his paper was published, as a result of a dis-
ease he developed while serving in the German army during
World War I. Johannes Droste in 1916 independently pro-
duced the same solution as Schwarzschild.

Schwarzschild's metric is an exact solution to the Einstein's
field equations that describes the gravitational field outside
a spherical mass, on the assumption that the electric charge
of the mass, angular momentum of the mass, and universal
cosmological constant is all zero.

The new generalized Dirac's operator, the multilevel op-

erator, is calculated in the Schwarzschild's metric, torsion
tensor and new gravitomagnetic tensor appear in level 2,
curvature tensor appears in levels 3 and 4.

The Kerr's metric is a generalization to a rotating body of
the Schwarzschild's metric. The Einstein field equation re-
lates the geometry of spacetime to the distribution of mat-
ter within it. The equations were published by Einstein in
1915 in the form of a tensor equation which related the lo-
cal spacetime curvature with the local energy, momentum
and stress within that spacetime expressed by the stress-
energy tensor.

Multilevel operator D™

We are using Pauli matrices o, electromagnetic four-poten-
tial A and charge e with h=c=1

=9 =) =G ) w0
= 3) ==(2) :

In four dimensions, Minkowski's metricn v:diag(+1,-1,-1,-1)
. Aoy g

leads to t_he Clifford algeb'ra C(1,3_)[2], Oy }—_2171 ’fI4x4'1D12

rgc matrices y’=0,®1, )/]=102®0'1.,j=1,2,3; yP=-iyt=-iy? y' y
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Multilevel operator D" acts on level n, n is the number of
matrices in the product of the algebra members, for exam-
ple, D® acts on y'%y'%y!? and y*3. Total multilevel operator
D™ = D% +D' +D? +D3 +D*, the action of Dmul on the spinor

function vanishes D™ ¥=0 3
DO = _m 4
D' = ytp, —ieyt A, 5
D? = —iey! " Fy, with Fl,, = Ay —Av,, 6
D? = —ieaE + eSH 7

D3 = _ieryﬂ’YV’YéF,uué with Fpué = A,uw ’0 _A;ué v — 0 8

D* = —ie’y“’y”’y‘S’yAFWM with Fiusn = Ao s —Auw 5 =0
9

Multilevel operator D™ (n#v,Au, e) can be generalized for a
curved space with four-potential P, field charge q and co-
variant derivative[3] (,'H ) instead of derivative (,M) in the
definition ofpu

D™ (g, Py ) ¥ = 0 10
{7} =2¢" x1 11
DO~ —m 12
D' =~tp, —igy"P, 13
D? = —igy"y"' Gy with G = Py — Py, 14
GMV(P):PM;V*PII;M:Puwfpv,uJFPaTﬁu 15
Gpus(P) = Fu(P) + PTS, 16
D? = —iqaE(P) + qSH(P) —ig3y"~" PaTg, 17

For gravity G (P) is the new gravitomagnetic tensor. T is
) uv v
the torsion tensor [4].

D? = 7iqfY“’YV'76Guv5 with Guus = Puv;s — Pus,e 18

Guvs(P) = Py R}, 5 with R, 5 the Riemann-Christoffel ten-
sor [5]. 19

D? = —iqy*y!y? P Rgy, —iq7°y' v’ Pa Ry —iq7"7*y° Pa Rflys

—iqy"V 7 PoaRiyy 20
D* = _iq'y'u’yy/yé/y/\GuwS)\ with Gp,l/é)\ = PM;V;(S;)\ - PM;V;/\;(S
21

. N 22
Guvsa(P) = Pa Rj5y + Pua Rysy
D* = —ig° 'V 9P Pasi Ry — 107"y v*Y* Poa Rias 23

Gravitomagnetic tensor defined in Schwarzs-
child's Metric

We are using x°=t,x'=r,x*=0,x3=¢ with G = ¢ = 1, this metric
is defined by [6]

ds? = (1 - %)diﬁ2 -(1- %)’1&2 —r2df? — r?sin®0d¢® 24

goo = (1—24), 911 = —(1 = 24)71 gyp = =12, gg3 = —r2sin’0
25
g0 = (1 2L)=1 gl (g 2y 222 o33 D=2
26

F(lJO = gooMT_2 27
ry, = go_oer_2 28
'l = —goo Mr~2 29
Iy =Ti=r" 30
F%Q = —gooT 31
'3, = cotf 32
Il = —goorsinf 33
', = —sinfcost 34
{7} =2¢" x1 35

0 —12(1 0 36

= Y00 0 —J1

1 12f 0 o1 37

Y = —Y00 <_01 0)
0 o

2_ -1 2

e (—02 o) 38
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3 1. -1 0 o3 39
v' = —r""sin 0<_03 0
D? = imaE(P) — mSH(P) 4 imgy"y" P,TS, , from
equations (16) and (17) 40
Gho = —Hy(P) = (—goy ") (=1~ ) (P12 = P2.1) 41

Ghg = Hy(P) = (~ggh?) (=1~ Lsin10)(Prs — Py1) 42
Gaos = —Hy(P) = (—r 1) (—r~1tsin=10)(Py 3 — P5,2) 43

Gos = —E3(P) = (g05"%)(=r~Lsin"10)(Py 5 — Ps.0) 44

Goz = —Bs(P) = (900" *) (=) (Po,2 — Pa0) 45
Go1 = —E1(P) = (900"") (—904>)(Po,1 — P1.0) 46
T,fu =0 and Rf;, = Rfj5 = Riy3 = Ris3 =0 47

Energy-momentum form is a 1-form [7]

p = bdt — p,dz — p,dy — p.dz 48

dp is a 2-form
G =dp=FE,dt Adz + E,dt Ady + E.dt Adz — B,dy

ANdz — Bydz Adx — B.dx Ady 49
G32 =DPzy — Dy,z 50
G13 =Pz,z — Pz 51
G21 =Py = Pay 52

Comparing equations (41-43) and (50-52) we can infer
P, = pa 53
DY is related to the scalar 0-form m, D! is related to the En-

ergy-momentum 1-form, D? is related to the Electromag-
netic 2-form, D3 is related to *J 3-form [8]

*J123 —p
*Jozs | _ J 54
*Jo13 —J2
*Jo12 J3

D*is related to L 4-form [9]

L= L0123d$0 N dxl N dxz A d$3 55

y? =-iy" is the proyector matrix, historically y°, but y5=y° y?

| ) {0 -
7P = ~i7%71929% = (gg0 ) (— 00 ) (=) (~r~Lsin 1)<—I 0>

56

Torsion Tensor in a Rearranged Kerr's Metric

We are using x°=t,x'=r,x*=6, x3>=¢ M is the black hole's mass
and a is the angular momentum per unit mass with G = ¢
= 1. The invariance of the length of vectors under paral-
lel transport means that the connection is compatible with
the metric, it is a metric connection, the requirement of the
preservation of the length by parallel transport may be
stated as [10].

uvio = 0 57

9uvio = Guv,oc — gavrgo - guargg 58

0= Guv,o — gyargg - taurgg - guargg , with Ly = Guv — Gup

59
0= g0 — Goal% — tawT% — GualS, 60
g,uargo- + guarzg + tocurfzo- =Guv,o 61
F/_wa + Fu,ua + taugaAFAya = Yuv,o 62

Solving these equations, we get the torsion applying its
definition [11].
F;u/o - 1ﬂuo’l/ = _Tuua 63

Expanding the line element in powers of r ' and examining
the leading terms [12].

ds? = [1 = 2L 4 O(r=2))dt? + [ 5in26 + O(r—2)]dtde
— 1+ O@(r=YH][dr? + r2d6% + T2$i7;29d¢2] 64

Rearranging the line elements

ds® = [1= 2+ 0(r=2)]dt* +[O(r~2)]dtdg +[*4 M sin’6)]

T

dodt—[1+O0(r=H)][dr?+ r2d6? + r?sin0d¢?| 65
goo = [1 — 2L 4+ O(r=2)] 66
903 = [0(r~?)] 67
g1 =—[1+0(r 1Y) 68
goz = —[1L+O(r—")]r? 69
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g3z = —[L+ O(r=1)]r?sin?0 70
g3o = [4“TM sin20] 71
tos = [O(r=2)] — [2eM 5in2g] 72
9°° = g33(g00g33 — go3gso) ™" 73
9% = —g03(900933 — 903930) * 74
gl =g} 75
¢ = g5} 76
g% = —g30(900933 — 903930) 77
9** = g00(900933 — 903930) " 78

Generalizing Clifford algebra with (5fflff if p # v and g,

2 0 then 1,else 0

{1} =g 4 g = gopt — 9ot 79

. ’ (I 0
70 = [14 0@~ 1)Y?rsind(googss — gozgso) +/? (0 I)

80
—1yg— 0 o
Y =[1+00r ) <al 01> ”
2 —1y-1/2,-1( 0 02
2 =nroe (07 -
oM -2 00
¥ =11— =+ 00" )]"*(googss — gosgso) "/* <_ 03>
r 73
83
D? = imaE(P) — mZH(P) + imgy"'y" Po TS, | 84

from equations (16) and (17)

Fiy = —Hy(P) = ([1+0( )] /2)([1 + 0 )] /%)

85
(Pro—Py1)

Fiy = Ha(P) = ([140(r )] /2)([1-22+0(2)] 2

(900933—903930) /) (P 53— P3,1) 86

Fiy = —Hy(P) = ([1+0(=1)] /1) (1~ £0-—2)
Y2(g00933—903930) "/ ?) (P2 3~ Ps2) 87
Fog = —E3(P) = ([1+O(771)]1/27”3in9(900933—903930)71/2)
([1=2M L O(r=2)]"/2(googss —903930) /) (Po,3 — P3.0)

88
Foz = —E2(P) = ([1“'0(7"71)]1/2T5in9(900933—903930)71/2)

(1+0(r=H)] 727~ 1) (Py 2= Py ,0) 89

For = —E1(P) = (1+0(r~)]2rsinf(g00gs3 —gosgs0) ~ /%)

([1+O(7"_1)]_1/2)(P0,1_P1,0) 90
P = —iy! is the proyector matrix, historically 7°, but
A5 = 402

VP =~y y2y3 = ([1+O0(r= )] ?rsind(googss —gosgso)

S2)([OGH]2) ([1 Ofr )2 ([ - 2 4.0

0o -1
(r=2)]*2(googss — gosgso) ~*/?) (—I 0 ) 91

Geodesic Equation and Torsion Tensor

A geodesic that is not a null geodesic has the property that
[ ds, taken along a section of the track with the end points
P and Q, is stationary if one makes a small variation of the
track keeping the end points fixed. If dx* denotes an ele-
ment along the track [13].

ds* = g, daxtdx” 92

2dso(ds) = dxtdx”6(guy) + guvd(dazt)dz” + g, dat(da”)

93
2dsd(ds) = dzhdz” g5 6(2) + 2gadxtd(da?) 94
§(dz?) = dé(z*) and da* = vids 95
[8(ds) = [[Lguum vFv¥ 62> + guavi 922 ds 96

By partial integration with éz* = 0 at end points P and
Q, we get

§ [ds= f[%gw,,,\ oY — %(Qu)\’l}“)}(sx)‘ds 97
The condition for this to vanish with arbitrary dz* is

$9uva VM0 =0 98
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m
%(Quwﬂ) = gu,\dd% + Gur,w VMV 99

dis(gp)\vu> = g)\u% _t)\u% + %(gu)\ﬂ/'i'gy)\au)vuvu , and
with £,0 = gur — 9u 100

d _ dov* dv* 1 1
35 (9ua0") = a5 — G+ 39w + Gawop) 0V + 5

(t,LL)\W +t1/)\7u )v#vy 101

From equation (98) with £, x = guv. A — Gup.

d 1 1
75 (9ua") = 3Guua V'Y = Gty v =0 102

Thus the condition (102) becomes

gAM% — txu% + I_B\Wv’%” — I.B\Wv“v” =0 103
f)\;w = %(g)\,u,vl/ + I vy — guua)\) 104
fA,uu = %(tA[LﬂJ + t)u/,u - tl/;n)\) 105

Multiplying equation (103) by g°*, we obtain the geodesic

equation

W7 g AW L + TG, vt — 19 vk =0 106
7V rg, v’ =0 107
ro,=r9,-19, 108

f‘fw are the Christoffel symbols of the symmetric part, so
10, =10, -1, =17, -3, + 5, - 17, 109
0= FZV - Fgu + FZV - Fgu 110
We directly obtain the torsion tensor without solving
equations (62) and (63)

o _ To o 111
Tuv - FIW B sz

Einstein Field Equation and Conservation Laws

From equation (108) wheref‘fware the symbols of the sym-
metric part

ry, =Tu, —T%, 112

1:‘5;4 = f‘zu = g'u)\f/\;w = g'u)\%(gkuw + Iavop — Grpsx )
113

I, =(V=9)""V=0,+ 9" (9w — Gou) 114

Equation (112) becomes

Fﬁu = (V _g)_l V=9 +gﬂ>\%(gAV)M - gVIJ«’)\) - Fﬁp,

115
-1
o =W=9""V-9, -t 116
t, = _g#A%(g)\l/au _gV“’A) +F5H 117
The vector A* has the covariant divergence
A#;u = Aﬂ,u + FﬁuAV 118

(Au;u + tVAV)\/j = (AN\/TQ),;L 119

If the left-hand side of equation (119) equals zero then the
right-hand side gives us the first conservation law.

For the antisymmetric tensor F*Y = —F"#

PV, = P 4 T P 4 T, P 120

PRy, = FI o, = THLF + ((V=9)""V=g, — t,) F"*
121

(FHY0 + Y FPY + 1, FPP) =g = (FF'"V/=g) 122

If the left-hand side of equation (122) equals zero then the
right-hand side gives us the second conservation law.

For the antisymmetric tensor Fy,, = A, — Ay,

Fuv = Apw — Avp + T3, A 123
Fuvie = Fuvo = T8y Fay — 15, Fua 124
Foow=Foop =17, Foc — 15, Fua 125
Fopw =Fopw —Tg,Fap — 1, Foa 126

Adding equations (124), (125) and (126)

Fpu;o + Fuo;u + Fou;l/ = TﬁyFaa + (T;yAa),a + T;lgFua

+ (TVOCO'AOC)’N + TguFVa + (Tt?p,AOt),V

127
From the definition of the curvature tensor prg
Rﬁpcy = Fﬁa,p - ng,cr + Fgorgp - ngrlga 128

R* s called the Ricci tensor
vpp
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Ry, = -T¢

po,v

+ T

v, o

a 7B a B
R VO VN 129

Now R isnotsymmetric,24 =R -R istheantisymmet-
uv v Vi

ric partand RM =A,*S, where S, 1s the symmetric partin

the Einstein's equation [14]

Spv — 29,8 = KT 130

24, = ~(V=9)"'"V=9, —tw) v+ (V=9)""V=0, — t),

—\—1
_T/fua T/jél/(( _g) 9 _ta) 131
QANV :tﬂvV_ TSVa_T;V((V_g)_l 9.« _ta)
132
R;w - A;w - %g,“/(R - A) = '%T;w 133
RMV - Ap,u - %guuR = KT/AI/ 134
Conclusions

Multilevel operator D™ (g P, has be generalized for a
curved space with a general four- -potential P. For gravity
G, (P) is the new gravitomagnetic tensor and torsion ten-
sor T% appears in its definition.

InaatspaceG, ,(A)= F, , (4), D3 and D4 operators vanish. In
a curved space "the curvature tensor R? ; appears in levels
3 and 4.

The appearance of torsion tensor T * and curvature ten-
sor R % in multilevel operator D™ (g 7 ,q) means that
this operator is a fundamental operator in Quantum Field
Theory.

y %y Ly 2y 3 have been calculated for Schwarzschild's met-
ric, then G (P), the gravitomagnetic tensor has been ob-
tained.

Each D", where n is the number of y matrices in the product
of the algebra members, is related to an n-form.

The invariance of the length of vectors under parallel
transport requires the vanishing of the metric tensor co-
variant derivative, a new term appears in equation (59)
with ¢, =g, -g,, measuring the non-symmetric part of the
metric tensor solvmg these equations we get the torsion

tensor.

Rearranging Kerr's metric we obtained t03 = g03 - g30, the
non-symmetric part of the metric tensor, gravitomagnetic
tensor has also been calculated generalizing the Clifford
algebra.

Taking into account the t, =g, -g,, in the geodesic equation
we have obtained the torsion tensor conservation laws and
Einstein field equation in a non-symmetric geometry.
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