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Abstract

The solution of Schrodinger's equation for a gravitational system leads us to Planck's gravitational constant and Kepler's third
law.The solution of Schrédinger's equation for an electron orbiting a nucleus leads us to the emission of gravitomagnetic
photons when the gravitational potential is also taken into account. In four dimensions, the Minkowski metric 7}::-= diag
(+1,-1,—-1,-1) leads to the 16-dimensional Clifford algebra C(1,3), Dirac's equation [1] is using four of these 16 matrices that
form a basis of this algebra, a new operator is defined using all of these matrices and also generalized for a curved space.
This new multilevel operator generalizes the Dirac's equation, the value of the generalized Dirac's operator is calculated in
the Schwarzschild's metric. The torsion tensor is calculated taking into account the non-symmetric part of the metric tensor
in the vanishing of its covariant derivative and applied to Kerr's metric generalizing the Clifford algebra. Geodesic equation,
conservation laws, torsion tensor and Einstein field equation are obtained in a non-symmetric geometry.

KCYWOI’dS: Planck's Gravitational Constant, Planck's Constant, Kepler's Third Law, Schrodinger Equation; Gravitomagnetic Photon
Emission; Gravitomagnetic Tensor; Gravitational Magnetic Field; Energy-Momentum 1-Form; Clifford Algebra; Dirac Equation; Dirac
Operator; Gravity and Quantum Mechanics Unification; Multilevel Operator; Schwarzschild's Metric; Torsion Tensor; Rearranged Kerr's Metric;
Generalized Dirac Equation; Generalized Clifford Algebra; Generalized Einstein Field Equation; Generalized Geodesic Equation; Conservation

Laws; Non-Symmetric Geometry

Introduction

Dirac's equation is the relativistic wave equation
derived by physicist Paul Dirac in 1928. The wave
functions in the Dirac theory are vectors of four
complex components (known as bispinors), two of
which resemble the Pauli wavefunction in the non-
relativistic limit, in contrast to the Schrodinger
equation which described wave functions of only one
complex component.

Dirac's operator is just the tip of the iceberg, the tip of
a generalized operator that is obtained by operating
on all members of the Clifford algebra basis and not
just on four of them.

The Schwarzschild's metric is named in honour of
Karl Schwarzschild, who found the exact solution in
1915 and published it in January 1916, a little more
than a month after the publication of Einstein's theory
of general relativity. It was the first exact solution
of the Einstein field equations other than the trivial
flat space solution. Schwarzschild died shortly after
his paper was published, as a result of a disease he

developed while serving in the German army during
World War I. Johannes Droste in 1916 independently
produced the same solution as Schwarzschild.

Schwarzschild's metric is an exact solution to
the Einstein's field equations that describes the
gravitational field outside a spherical mass, on the
assumption that the electric charge of the mass,
angular momentum of the mass, and universal
cosmological constant are all zero.

The new generalized Dirac's operator, the multilevel
operator, is calculated in the Schwarzschild's metric,
torsion tensor and new gravitomagnetic tensor
appear in level 2, curvature tensor appears in levels
3 and 4.

The Kerr's metric is a generalization to a rotating
body of the Schwarzschild's metric. The Einstein field
equation relates the geometry of spacetime to the
distribution of matter within it. The equations were
published by Einstein in 1915 in the form of a tensor
equation which related the local spacetime curvature
with the local energy, momentum and stress within
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that spacetime expressed by the stress-energy tensor.

Planck's gravitational constant

In the hydrogen atom an electron is orbiting a nucleus with 1 proton, we know the energy levels from the
solution of the Schrédinger's equation[2], where 1 is the proton mass, m, is the electron mass, y is the
2-body reduced mass, e is the electron charge, 7 is the position of the electron relative to the nucleus, the
potential term is due to the Coulomb interaction wherein €j is the permittivity of free space.
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with k = k_, now for a gravitational potential
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And in equation (4) we replace 2 by 14
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Planck's gravitational constant values

Weapplyequation (6) tothe Sun-Earth system, equatingequation (6) tothetotal energyofthe gravitational system we get the
value of Planck's gravitational constant in this system, M. = 1.9885 - 1030 kgisthe Sunmass, M. = 5.97237 - 10** ke
is the Earth mass, @ = 149598023000 m is the semi-major axis, eccentricity £ = 0.0167086,k; = GM u,n=1+1

and L the angular momentum. The total energy of the gravitational system is defined by
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E= 2a  Za 7
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L =1(1+ 1)hZ = GM ap*(1— &%) ©)
n?h? = (1+ 1)*h; = GM,ap’ (10)
e L
1 e ETE T hom (9)/(10) (11)
n = 3581.9529381362201856 (12)
n = 3582, ¢ = 0.0167084902372362 (13)
E=— ﬂ‘”_‘;"_ = —?
_fiﬁ:'!" 2a (14)
7 pkga
ﬁg — (15)
h, = 7.429057157452823641047994068434371633734281721064587940439666045 - 10%¢ (16)
h, = 4.66781427779049252488785364223568563336168774518864147659109445351615 - (17)

lﬂﬂ?

We apply equation (6) to the Sun-Jupiter system, M_ = 1.9885 - 1032 kg is the Sun mass, M; = 1.8982 - 10°7 kgis the
Jupiter mass, @ = 778547261754.2769 m is the semi-major axis, eccentricity ¢ = 0.04839266,k, = GM.u

n = 427.0129152699940647 (18)
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n =427, e = 0.0483933918495827 (19)

_ J"’f_g:"’f_l"

- Mgt (20)
E—_ M5 _ kg

2?‘.3::5 2a (21)

h;. = #:fn (22)
hy = 4.51432854542679369402042539318547953563841218096050790100265485011794 -
hgy = 2.8364352788407024541545842 84582383 11366657 0450687201499960574667851725 -
10% (24)
Now we consider the hydrogen atom with 11 = 1, from equations (3) and (4)

_ _MKE ke
E= T 2a, (25)
0.5294654098261038473779109239248424187086013514771619339353797488 - 10710 (26)

Comparing equations (25) and (21) we see the role played by the semi-major axis a now is played by ¢ and from equa-
tion (22)

h, = 2.21339220907051688840536594129522138437628260139671804019981879125 - 1075+ (28)

hg = 1.390715340705763914900480582604931793072338111755113257836699466638 -

10753 (29)
Now if we adapt equation (27) to K« we should obtain the Planck's constant value

A2 = uk,aq (30)
h = 1.0545718176461564 - 10734 (31)
h = 6.6260701500000000549 - 1073 (32)
Kepler's third law

If the Hamiltonian is not an explicit function of time, the wave function is separable into a product of spatial and tem-
poral parts [3].

. . ziEe

Y(rt) =y(rje t (33)
T is the period and Kepler's third law is defined by
oM _ 4n®

a® TS (34)
E is the total Energy in a gravitational system defined by E = % (35)
From equation (10)

h= —"G“"::‘:"“ (36)
and
E _ GMsp n _ E':GMS}E _ Em

B 2a ,:GMsﬂﬁ# T2 2 T2 (37)
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@m is the mean motion angular speed defined by
__ &
Wy = ?
_ (GMJz
Wy = E]
oI

equations (38) and (39) define Kepler's third law and

— Mt

P(rt) =¢e =

Five new planets in Proxima Centauri

Mean motion angular speed @m for our planets:

@Wm1 =0:0000008266683161721671725893680342060 — Merucry
Wm2 =0:0000003236397806290027502923891805337 — Venus
Wm3 =0:0000001990958336720942466833404885350 — Earth
Wma =0:0000001058577386399185014918267545470 — Mars
Wims =0:00000004324349662 — Ceres

Wme =0:000000017320508 —Jupiter

Wm7 =0:0000000067118273148381163645269302 — Saturn
Wms =0:0000000023610970045003705167333373453 — Uranus
Wma =0:0000000012054073971413942728010767548 — Netpune

Wm1o =0:0000000008092269920779060844908523775485 — Pluto
mml.fmmn ratios:

Wy [ Wz = 2.554285244432914670779337281410185998342

Wy [,z = 4.152112582796025641132599537390429110737

Wy [, = 7.809238387229576415481006972503699305849

Wy [, = 19.116592800912295250683362390087871668505

Wy [0, = 47.727717695818573715584325483 17866889 3545

Wy [, = 123.16590957944002434431452276 1661650849029
W,y Jw,s = 350.12043749007155504550324403 12483043 19200979
W,y [, = 685.79993629755284246820561633365273445660675

Wy [@m1p = 1021.5530676373953341760499255797110784478856049

Mean motion angular speed “/m for planets in Proxima Centauri:

e = 0.000014087146623784 —Proxima—q

W = 0.000006513393892588 —Proxima —b
Wz = 0.0000000398204257868 —Proxima - ¢

m ml."rmm:'z ratios:

(3%)

(39)

(40)

(41)

(42)

(43)
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Wy [@ma = 2.162796670383261930601
Wy [@ms = 353.76685069132842946962 (44)

Comparing equations (42) and (44) we see a gap for 5 planets from W1/ @m3 to Wm1/Wm7

Gravitomagnetic photon emission

An electron is orbiting a nucleus with Z protons, we know the energy levels from the solution of the Schrédinger equa-
tion[2], where ™ is the proton mass, ¢ is the electron mass, i is the 2-body reduced mass, e is the electron charge, T
is the position of the electron relative to the nucleus, the potential term is due to the Coulomb interaction wherein £ is
the permittivity of free space and m; is the mass of the nucleus.

__ mymg

- mpy+mg (45)
V{T} - 4i:-.:" - %

wEy (46)
—__ wze
Ey = (4meg)22hin? 47)
E” T zhInt (48)
_H

C” T 2kInt (49)
E:lz = _Cn'r':: (50)
with & = k_, now adding the gravitational potential

)= ke _Cmyu_ ke kg [(ketkg) &
V{.T } - - r - " r - » - ;l1 (51)
And from equation (50)
Ep=—Cn(k2+ 2k K, + k2 (52)
Ep=—Cn(kZ+kky+kZ+k,k,.) (53)
Ef = —Cal(k2 +koky) (54)
ES = —C (k2 + K k,) (55)
E,=E;+E? (56)
hvy = (C:: —Ci)(i2 + 'E':E'i':g) (57)
hvi = (€] — CL)(kZ + kgk.) (58)

From equation (58) l‘f is the frequency of the gravitomagnetic photon emitted from the initial energy level to the final
energy level. This emission leads us to the gravitomagnetic tensor. Gravitational magnetic field generates the extra force
needed to explain the anomalous behavior of pendulums observed during a solar eclipse, the Allais effect [5] and also
explains the dark matter effect without exotic particles never detected. Gravitational magnetic field is also derived from
Special Relativity force transformations [6], when velocities point to the same direction a repulsive gravitational mag-
netic force is induced. Gravitomagnetic tensor will appear below in equation (88) at level two of the generalized Dirac
equation [”

From equation (57) Vj; is the frequency of the electromagnetic photon emitted from the initial energy level to the final

energy level. The correction of the second term is an indirect detection of the gravitomagnetic photon emission

H:

T (4megliic (59)
(60)

pEte? et 1 3
E=—- — |1+ ———
(4megh22h3nd n s 4m
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In equation (60) we have the energy levels from the solution of the Dirac's equation [4]. The first term is the solution
of the Schrodinger equation that we have seen above in equation (50) and the second term is the relativistic correction

Eo=_ uzZgt z%ﬁ(i__i)

’” (4me)22hn® n | j+2  4n (61)
Crs = i (;l‘ - i) (63)
Enj=—Cpik* (64)
Epy=—Cpjlks + *"-'gjq (65)
Ep; = —Crj(KZ+4k3k, + 6K2K2 + 4k kG + kE) (66)
Epj=—Cpj(kd+ 2Kk, + 3k2KZ + 2k kG + kj + 2k3k, + 3kZk2 + 2k, k3) 67)
ES; = —Coj(kE+ 2Kk, + 3K2K2 + 2k KZ) 68)
By = —Coj(kG + 203k, + 3KZKE + 2] 69)
Eqi= E:}. + Ef}. (70)
hvs; = (cf— 8 )(kd + 2kEk, + k243 + 2k k) .
hove = (c;;. - cfu.){s.:; + 2k3k, + 3k2K2 + 2Kk k3 -

From equation (71) Vp ;7 is the relativistic correction of the electromagnetic photon emitted from the initial energy level

g
to the final energy level and from equation (72) ¥  is the relativistic correction of the gravitomagnetic photon emitted
from the initial energy level to the final energy level.

Multilevel operator D mul

We are using Pauli matrices @, electromagnetic four-potential 4x and charge e with i = ¢ = 1

R R R IR L PN

(59 == )

In four dimensions, Minkowski's metric #,, = diag(+1,—1,—1,—1) leads to the Clifford algebra
C(1,3)[7]. {y*. ¥} = 2n*¥ % L., Diracmatricesy " = o3 @ I, y/ = ic, ® o;,] = 1,2,3;¥7 = —iy!* = —iyOyly?y?
pr=y0ylyS =y lys =yOiyT = ylylyt =y Yy =y3y?

pl0 = pOply2 p 1l = 0yLy3 12 = 00203 113 g1y, 203 14 = 010,23 (74)
Multilevel operator D™ acts on level n, nn is the number of ¥ matrices in the product of the algebra members, for example,
D? acts on 12,111 12 and 2. Total multilevel operator pmu = p® + p1 + P2 + D3 + D4, the action of pmil op

the spinor function vanishes D™*'¥ = 0 (75)
D'=—m (76)
D! =y#p, —iey*4, (77
D* = —iey Y Eu yith fv = Apw — Avs (78)
D? = —jeaE + eEH (79)
D3 = —iey*y"y* Fuus with Fuvs = Auvs — Apsy =0 (80)
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D* = —iey*y ¥y Fnsa with Fved = Auvsa — Apvias =0 (81)

Multilevel operator D™ '[??wu—"lw E‘} can be generalized for a curved space with four-potential P, field charge 9 and
covariant derivative [8](; 1) instead of derivative (, ,.) in the definition of Py

D™ (g, By q) ¥ =0 (82)
{rt.y'}=2g*"x1 (83)
D= —m (84)
D! =y#p, —iqy*F, (85)
D* = —iqy*y" Guy with G = Buy — Poyy (86)
Guv (P) = Busy = Py = Buy = Royy +RTS, )
Gw,l[:P] =FE, (P) + E.TS (88)
D* = —iqaE(P) + qZH(P) — iq%}f“}f"PﬁTﬁ (89)
For gravity Guv (P) is the new gravitomagnetic tensor. Tuv is the torsion tensor [9]
D? = —iqy*yVy %G s with Guvs = Pupis — Puisi (90)
Guvs (P) = P Rjjy5 with R;:vs the Riemann-Christoffel tensor[10] 1N
D? = —iqy°y'y*FRgyy — iqy °y 'y *FaRgys — iy "y Py *FaRGys — iqy vy *FaR g (92)
D* = —iqy*yVy ¥ Guvaa with Guvéa = Puvisia — Pusviiis (93)
Guvsa(P) = FanRusa + BiaRosa (94)
D* = —iqy vy 'y?y*Pa;1 Rzs — 1ay v vy *PoaR 123 (95)
Gravitomagnetic tensor defined in Schwarzschild's metric
We are usmgxﬂ' =t,xt=1rx%=6,x% = ¢pwith G = ¢ = 1, this metric is defined by [11]
ds?=(1-=")ar*—(1- "“) " dr? — r2de? — r2sin® 6 (96)
oo = (1 - _M) 11 =~ (l - ﬁ) ,G22 = —17%,g33 = —1r7sin* 6 (97)
g% = (l —i—) =— (l - —) g@2 =—r"2g¥ =—r"%sin"?8 (98)
Fulu = GooMr~? (99)
To1 = Ggg Mr™> (100)
I}y = —gooMr~? (101)
;=03 =r"t (102)
T = —Goo” (103)
I‘:HE = cotd (104)
Iy = —ggorsin® 6 (105)
FH:E = —sinfcos @ (106)
{r#yv}=2g" x1 (107)
o ({] —I) (108)

Volume - 4 Issue - 2

Citation: Delso J (2023) On Planck's Gravitational Constant and Kepler's Third Law Derived from Schrédinger's Equation. OSP Journal of Page 7 of 13
Physics and Astronomy 4: JPA-4-149. g




OSP Journal of Physics and Astronomy Copyright © Delso |

; 1/2 0 oy
Fl:—gDD (_51 ﬂ)

(109)
,f 0 i
2 -1 2
==, 5)
gz 0 (110)
3 ~1gin—1 0 o3
y*=—r"-sin"- @ —o. O
3 (111)
D* = imaE(P) —mIH(P)+ imZ y*y VTS, from equations (88) and (89) (112)
. 1|,-'g - 1
Gyn = _HE{P} = (_QDD ){._T l}{PL: - Pf,l} (113)
. 1|,": . — .
Gi3 = Hz(P) = {_Qg.g. ){._T sin~t E}{PLEI - PELl} (114)
G:a = _HL{P} = {:_T_l}{:_i'_lsin_l B}{P:_.H - Pﬂ,:} (115)
) 102N . a4, -
Gl}ﬂ = _EE {P} = (“gl}l} :]{._T J'S].].'J. 1 B}{Pﬂ_ﬂ - Pﬂ_.l}} (116)
: -2y .
Ggz = —E;(P) = (Qg..} :]'[._T l}'[PD,: - Pf,l}} (117)
r _1.1'l: 1.!"2
Gor = —E1(P) = (900" ) (=950 ) (Po = Pro) (113)
Tiv =0and Ry, = Rpy3 = Rz = Rip3 =0 (119)
Energy-momentum form is a 1-form [12]
p = Edf —p.dx —p,dy—p.dz (120)
dp is a 2 -form
G=dp=EdtAdx+E,dt Ady+ E.dt Adz — B, dyAdz — B, dzAdx — B dxAdy (121)
G3z = Py — Pyz (122)
G13 = Pez — Pz (123)
Gyy = Pyx ~ Py (124)
Comparing equations (113-115) and (122-124) we can infer B, = p,, (125)

D?jisrelated to the scalar o -form m, D! is related to the Energy-momentum 1 -form, D ? is related to the Electromagnetic
2 -form, D? is related to *J3-form [13]

* [123 P

* Joz3 _|

* Jo13 —Jz

* Jo12 Jz (126)
D* s related to L4-form [14]
L - LDl:E d.‘x.’Dﬂ d_‘x.'lf"; dx: A dxa (127)
y¥ = —iy1*is the proyector matrix, historically Y2 but s = 02

P 01,203 TNy e gy ca —ay (00
¥ iy y vty (gm :l( QDD){. r~ 1) (—r~1sin }(_f ﬂ) (128)

Torsion tensor in a rearranged Kerr's metric

We are using x° = t,x* = r,x% = 6, x® = ¢, M is the black hole's mass and a is the angular momentum per unit mass
with = ¢ = 1. The invariance of the length of vectors under parallel transport means that the connection is compatible
with the metric, it is a metric connection, the requirement of the preservation of the length by parallel transport may be
stated as [15]

Guve = 0 (129)
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Gpvic = Guvie ~ Javliic — Gualiis (130)
0= guve = Gvaliic — tavliz = 90ualVe with v = Guv — Gw (131)
0=0pe = gvelie — oLt — 0,00 (132)
Jualve + Gveliic Ttz = Guve (133)
Live T Lpe + t:rvﬂﬂfiw = Ouve (134)

Solving these equations we get the torsion applying its definition [16]
r,uv:? - F,u::v = _T,uv:: (135)

Expanding the line element in powers of ~* and examining the leading terms [17]

-

ds? =[1 ~2y o{}r-f}] dt? + [ﬂ sin2 8 + a{}r-f}] dtdp — [1 + 00r—1)][dr? + r2d6% + risin? 8dd?] (136)
Rearranging the line elements

ds?=[1- =+ a{}r-f}] dt? + [0(r~2)]dtdg + [‘“:—“ sin? a] dodt — [1+0(r—D)][dr? +

r2df* + risin® 8dg*] (137)
[ :J"’I 3 _:
Goo=|1—=—+00 }] (138)
goz = [0(r72)] (139)
g1 =—[1+0(r )] (140)
g22=—[1+ 00"’ (141)
gzz = —[1+0(r1)]r3sin® g (142)
4 J"’f . >
Oap = [ ﬁ‘ sin” E] (143)
=3 _ ZaM | 2
tos = [0(r~2)] [ —sin 15'] (144)
9°° = 933900933 — Goag30) * (145)
9% = —g03(900933 — Go3g30) 7" (146)
g™ = g1y (147)
22 _ -1
§7° =02 (148)
9°® = —g30(900933 — Go3g30) 7" (149)
9** = 900900933 — Goag30) ™* (150)
Generalizing Clifford algebra with &, : :,if,if M #Vand g, = 0then1,elseo
yry"} = g*v + gv* — g*ver,” — gvag,” (151)
P (I 0
po=[1+00r 1] rsiné(gopg33 — Goaga0) ™" (ﬂ —I) (152)
. S 0 o
1_ —1y]-1/2 1
Fr= [1+0(r~1)] (_51 0 ) (153)
- T N | T
yr=[+o(r 1] l(_m ﬂ‘) (154)
M e _mf 0 @
yE= [1 - T+ o(r '}] (900933 — Go3g30) > (_0_3 ﬂa) (155)

D? = imaE(P) — mEIH(P) + im% y#yVF, 1,5, from equations (88) and (89) (156)
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Fo = —H:(P) = ([1+ 0G0 Y2} ([1+ 0 (1] V2 1) (P, — Poy ) (157)

. 4 1 21 . - 12 . 1 fo
F; = H,(P) = I[[l + U{_T‘_l}]_l“‘} ([l - ?—w + G'[.T_‘]] (Go0g3s — Quagau}_l") (PLE - P:Li) (158)

, oz o
F;3 =—H,(P) = ([1 + 9'[:?‘_1]']_1“*:?'_1}([1 - _?_u + 9'[.'-"_']'] (g00g33 — 3&3330}_1“') {PLEI - Pa,:} (159)

M

12
Foz = —E3(P) = ([L + 0(r~1)]¥2rsin6(gpo 932 —Quagau}_l“:}([l -——t G'[.T'_:}] (9000933 —
Go3930) %) (Poz — Psp) (160)
For = —E2(P) = ([1+ 0Gr1)]1Y2rsin6(ggoo g3z — Goagao) ) ([1 + 0(r— D]~ Y2r=1)(Poz — Pap) (161)

Fop = —Ey(P) = ([1+ 0(r~1)]¥2rsin8(goog33 — Go3gze) +/2)([1 + OG- 2) (B, — PLoy  (162)

»

¥? = —iy1*is the proyector matrix, historically }"5, but y* = y°y*
y? = —iy®yty?y® = (1 + 06 D]¥?rsin6(googss — Gosgao) 2} ([1+ 0D V2)([1+
- . . 2] - A 1z . —
G{f.r"l}]'l*-:r"l}([l — ?—w + G{fr‘"}] (googas — Qaaﬁau}_l“') (E; gf) (163)
Geodesic equation and torsion tensor

A geodesic that is not a null geodesic has the property that I ds, taken along a section of the track with the end points P
and @, is stationary if one makes a small variation of the track keeping the end points fixed. If dx* denotes an element
along the track [18]

ds? = Gupdxtdx” (164)

2dsd(ds) = dx*dx"8(g,,) + 9, 0(dxH)dx” + g, dx*8(dx") (165)

2ds8(ds) = dx*dx” g,,16(x*) + 2g,2dx8(dx?) (166)

8(dx?) = do(x?) and dx# = v¥ds (167)
. 5.0

[a(ds) =] [ég“mu“ vVax? + g vt %] ds (168)

By partial integration with §x* = 0 at end points P and Q, we get

iad l s rl! o™

§[ds=] [ng_.ﬂ,{!.”l"! vV — ;{QMM}]ﬁ-x‘lds (169)

The condition for this to vanish with arbitrary dx# is

d 1 \

- (gav*) = guar*v¥ =0 (170)

d dvt ,

2 (0™) = 90 ¥ gy’ (a7

d drH deft 1 , . — _

E{QHAL""’!} = QA#E— tjgg+g{g#¢,,+ QPL.'.»!}EH L’1,andWlth tn'-*’*’l Hui — Gau (172)

d duwH dvf 1 1 i

= (80av*) = 93,7 = 1T 5 (9w + 920 )VHVY 43 (B + i )vH e (173)

From equation (170) with £, 4 = Guwi — Gupa

d J- ' J‘ .

25 (91a0") =3 0yuaVH VY = S V4V = 0 (174)

Thus the condition (174) becomes

dvH duH - . : ; 175
03,22 = 3, 2 + Dy 00 — T vHY = 0 (7)
- 1
1—:1,1.414 = E(g.l,u,v + Gl — gv,u,..l} (176)
: 1
B = 3 (B + tavu — tu) (177)

Multiplying equation (175) by g=4, we obtain the geodesic equation
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L DU L alhggV _ TF gafloaV —

= 9 tiu - + Lo vHo Lavdv" =0 (178)
du’ duk i

— — 97— + LR vk =0 (179)
L5 =05 — T3 (180)

liﬁ, are the Christoffel symbols of the symmetric part, so

—T5 =04 —0% =05 —TL+I5 - I (181)
0=T% —Lg +63 - I (182)
We directly obtain the torsion tensor without solving equations (134) and (135)
T3 =64 — L (183)
Einstein field equation and conservation laws
From equation (180) where ljﬁa are the symbols of the symmetric part
Bo_pM _ mH
Low = Do — Ly (184)
s - - 1
Fp,u_,g = r,-_,w = EHAI:MP = 3“‘1 E(g.l,u,v + 3.111*,,'.4 - gv,u,.l} (185)
S r Ty =1 1
]-‘1.-':_,! = {.\,l' _g} l\l' _‘g,v + g,b!ﬂ.; {gﬂh,&! - 31’#.-.-1} (186)
Equation (184) becomes
B S e T 1 i
]-‘1.-':_,5 = {.\u' _g} l\l' _gﬂ’ + g“‘l; (3411’”'.4 - gF.’.{d} - P‘I’,’J (187)
I e L
]-—‘1.-“ - {.\I‘ _g} \II _g_ﬂ-' - I’-T' (188)
1 .
t,=—g"*" (g tt — Guua) + T
1 g 2 {3;11 H—= 0, .u,.ri} v (189)

The vector A* has the covariant divergence

B M [T
A=A, +L A (190)

'[*'1 :p; +t,4 P}\-"'__Q = {AH\-"'__E?}JH

(191)
If the left-hand side of equation (191) equals zero then the right-hand side gives us the first conservation law.
For the antisymmetric tensor F#*¥ = —FV#
EyV = FMY , + T} FPY + I, F#e (192)
B = F = T F + (((=9) =g, — 1, ) P (193)
(F:“ + T;jstP + tﬂF#p}\-'ll__g = (F#P\'II'__E}JP (194)

If the left-hand side of equation (194) equals zero then the right-hand side gives us the second conservation law.

For the antisymmetric tensor F,,, = Ay, — Ay,

Bov = Apy — Ay + TR AL (195)
Bovie = Buve — Do Fov — N Fia (196)
Fooin = Fop — Bifae — TuFia (197)
Faun = Fopy = TavFay — L Foa (198)

Adding equations (196), (197) and (198)
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Euvio + B+ Fruy = TS Foa + (T54s) |+ T Eie + (TEA) u + T&Fe + (T8 AL) (199)
From the definition of the curvature tensor Rf oo
R: =rf _rf 4rerf _rarf
Voo T TVe.g VO F vo o votoe (200)
i
Rwﬂ is called the Ricci tensor
_ g 5
Ry =-Thyv+Lia— H‘} I+ I‘#";’,FRE 201)

Now Ry is not symmetric, 24, =R,,—R
metric part in the Einstein's equation [19].

" is the antisymmetric part and R,,, = 4, + 5., where §,,,, is the sym-

1
S —ng,.‘fz KT,

wv (202)
28w =—((J-9)"-g,~t) +((-9)"V-g,-t) —Tha —To (W09,
o) (203)
24 =ty —tyy — T — T8 ((J=0) /=g —ta) (204)
Ryv— Ay —%QW{R—A} = KTy (205)
Ry — Apy — %gw,R = KT,y 206)

Conclusions

Multilevel operator D™ I[ Gy B q} has been generalized for a curved space with a general four-potential P. For gravity
G, (P) is the new gravitomagnetic tensor and torsion tensor T, appears in its definition.

In a flat space G, (4) = F,, (4),D* and D* operators vanish. In a curved space the curvature tensor R, appears in
levels 3 and 4.

43 arl .
The appearance of torsion tensor I, and curvature tensor R pvé in multilevel operator D™ ( Gpnr Bl q} means that this
operator is a fundamental operator in Quantum Field Theory.

¥% 11 ¥%¥® have been calculated for Schwarzschild's metric, then G, (P), the gravitomagnetic tensor has been ob-
tained.

Each D', where 11 is the number of ¥ matrices in the product of the algebra members, is related to an *-form

The invariance of the length of vectors under parallel transport requires the vanishing of the metric tensor covariant

derivative, a new term appears tuv = Guv ~ Jvu measuring the non symmetric part of the metric tensor, solving these
equations we get the torsion tensor.

Rearranging Kerr's metric we obtained faz = Hpz — &30, the non symmetric part of the metric tensor, gravitomagnetic
tensor has also been calculated generalizing the Clifford algebra.

Taking into account the f,,, = g, — g, in the geodesic equation we have obtained the torsion tensor, conservation
laws and Einstein field equation in a non-symmetric geometry.

The solution of Schrodinger's equation leads us to the emission of gravitomagnetic photons when the gravitational po-
tential is also taken into account. The correction of the second term in electromagnetic photon frequency is an indirect
detection of the gravitomagnetic photon emission.

The solution of Schrédinger's equation for a gravitational system leads us to Planck's gravitational constant value and
Kepler's third law.
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