Appendix A Christoffel Symbol Calculations

For reference the metric is:
$g_{\mu \nu}=\left(\begin{array}{llll}-a^{2} & & & \\ & a^{2} & & \\ & & a^{2} r^{2} & \\ & & & a^{2} r^{2} \sin ^{2} \theta\end{array}\right)$,
and the equation for calculating Christoffell symbols is:
$\Gamma_{\mu \nu}^{\alpha}=\frac{1}{2} g^{\alpha \beta}\left[\frac{\partial g_{\mu \beta}}{\partial x^{v}}+\frac{\partial g_{v \beta}}{\partial x^{\mu}}-\frac{\partial g_{\mu v}}{\partial x^{\beta}}\right]$.
The non-zero $\Gamma_{\mu \nu}^{0}$ values are:
$\Gamma_{00}^{0}=\frac{1}{2} g^{00}\left[\frac{\partial g_{00}}{\partial x^{0}}+\frac{\partial g_{00}}{\partial x^{0}}-\frac{\partial g_{00}}{\partial x^{0}}\right]=\frac{1}{2}\left(\frac{-1}{a^{2}}\right)[-2 a \dot{a}]=\frac{\dot{a}}{a}$,
$\Gamma_{11}^{0}=\frac{1}{2} g^{00}\left[\frac{\partial g_{10}}{\partial x^{1}}+\frac{\partial g_{10}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{0}}\right]=\frac{1}{2}\left(\frac{-1}{a^{2}}\right)[-2 a \dot{a}]=\frac{\dot{a}}{a}$,
$\Gamma_{22}^{0}=\frac{1}{2} g^{00}\left[\frac{\partial g_{20}}{\partial x^{2}}+\frac{\partial g_{20}}{\partial x^{2}}-\frac{\partial g_{22}}{\partial x^{0}}\right]=\frac{1}{2}\left(\frac{-1}{a^{2}}\right)\left[-2 a \dot{a} r^{2}\right]=\frac{\dot{a}}{a} r^{2}$,
$\Gamma_{33}^{0}=\frac{1}{2} g^{00}\left[\frac{\partial g_{30}}{\partial x^{3}}+\frac{\partial g_{30}}{\partial x^{3}}-\frac{\partial g_{33}}{\partial x^{0}}\right]=\frac{1}{2}\left(\frac{-1}{a^{2}}\right)\left[-2 a \dot{a} r^{2} \sin ^{2} \theta\right]=\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta$.
The non-zero $\Gamma_{\mu \nu}^{1}$ values are:
$\Gamma_{01}^{1}=\frac{1}{2} g^{11}\left[\frac{\partial g_{01}}{\partial x^{1}}+\frac{\partial g_{11}}{\partial x^{0}}-\frac{\partial g_{01}}{\partial x^{1}}\right]=\frac{1}{2}\left(\frac{1}{a^{2}}\right)[2 a \dot{a}]=\frac{\dot{a}}{a}$,
$\Gamma_{10}^{1}=\frac{\dot{a}}{a}$,
$\Gamma_{22}^{1}=\frac{1}{2} g^{11}\left[\frac{\partial g_{21}}{\partial x^{2}}+\frac{\partial g_{21}}{\partial x^{2}}-\frac{\partial g_{22}}{\partial x^{1}}\right]=\frac{1}{2}\left(\frac{1}{a^{2}}\right)\left[-2 a^{2} r\right]=-r$,
$\Gamma_{33}^{1}=\frac{1}{2} g^{11}\left[\frac{\partial g_{31}}{\partial x^{3}}+\frac{\partial g_{31}}{\partial x^{3}}-\frac{\partial g_{33}}{\partial x^{1}}\right]=\frac{1}{2}\left(\frac{1}{a^{2}}\right)\left[-2 a^{2} r \sin ^{2} \theta\right]=-r \sin ^{2} \theta$.
The non-zero $\Gamma_{\mu \nu}^{2}$ values are:
$\Gamma_{02}^{2}=\frac{1}{2} g^{22}\left[\frac{\partial g_{02}}{\partial x^{2}}+\frac{\partial g_{22}}{\partial x^{0}}-\frac{\partial g_{02}}{\partial x^{2}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2}}\right)\left[2 a \dot{a} r^{2}\right]=\frac{\dot{a}}{a}$,
$\Gamma_{20}^{2}=\frac{\dot{a}}{a}$,
$\Gamma_{12}^{2}=\frac{1}{2} g^{22}\left[\frac{\partial g_{12}}{\partial x^{2}}+\frac{\partial g_{22}}{\partial x^{1}}-\frac{\partial g_{12}}{\partial x^{2}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2}}\right)\left[2 a^{2} r\right]=\frac{1}{r}$,
$\Gamma_{21}^{2}=\frac{1}{r}$,
$\Gamma_{33}^{2}=\frac{1}{2} g^{22}\left[\frac{\partial g_{32}}{\partial x^{3}}+\frac{\partial g_{32}}{\partial x^{3}}-\frac{\partial g_{33}}{\partial x^{2}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2}}\right)\left[-a^{2} r^{2}(2 \sin \theta \cos \theta)\right]=-\sin \theta \cos \theta$.
The non-zero $\Gamma_{\mu v}^{3}$ values are:
$\Gamma_{03}^{3}=\frac{1}{2} g^{33}\left[\frac{\partial g_{03}}{\partial x^{3}}+\frac{\partial g_{33}}{\partial x^{0}}-\frac{\partial g_{03}}{\partial x^{3}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2} \sin ^{2} \theta}\right)\left[2 a \dot{a} r^{2} \sin ^{2} \theta\right]=\frac{\dot{a}}{a}$,
$\Gamma_{30}^{3}=\frac{\dot{a}}{a}$,
$\Gamma_{13}^{3}=\frac{1}{2} g^{33}\left[\frac{\partial g_{13}}{\partial x^{3}}+\frac{\partial g_{33}}{\partial x^{1}}-\frac{\partial g_{13}}{\partial x^{3}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2} \sin ^{2} \theta}\right)\left[2 a^{2} r \sin ^{2} \theta\right]=\frac{1}{r}$,
$\Gamma_{31}^{3}=\frac{1}{r}$,
$\Gamma_{23}^{3}=\frac{1}{2} g^{33}\left[\frac{\partial g_{23}}{\partial x^{3}}+\frac{\partial g_{33}}{\partial x^{2}}-\frac{\partial g_{23}}{\partial x^{3}}\right]=\frac{1}{2}\left(\frac{1}{a^{2} r^{2} \sin ^{2} \theta}\right)\left[a^{2} r^{2}(2 \sin \theta \cos \theta)\right]=\cot \theta$,
$\Gamma_{32}^{3}=\cot \theta$.

Appendix B Ricci Tensor and Scalar Calculations

For reference the non-zero Christoffell symbols are:
$\Gamma_{00}^{0}=\frac{\dot{a}}{a}, \Gamma_{01}^{1}=\Gamma_{10}^{1}=\frac{\dot{a}}{a}, \Gamma_{02}^{2}=\Gamma_{20}^{2}=\frac{\dot{a}}{a}$,
$\Gamma_{11}^{0}=\frac{\dot{a}}{a}, \Gamma_{22}^{1}=-r, \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{r}$,
$\Gamma_{22}^{0}=\frac{\dot{a}}{a} r^{2}$,
$\Gamma_{33}^{0}=\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta, \Gamma_{33}^{1}=-r \sin ^{2} \theta, \Gamma_{33}^{2}=-\sin \theta \cos \theta$,
$\Gamma_{03}^{3}=\Gamma_{30}^{3}=\frac{\dot{a}}{a}, \Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{1}{r}, \Gamma_{23}^{3}=\Gamma_{32}^{3}=\cot \theta$,
and the Riemann tensor equation is:
$R_{\beta \mu \nu}^{\alpha}=\frac{\partial}{\partial x_{\mu}} \Gamma_{\nu \beta}^{\alpha}-\frac{\partial}{\partial x_{\nu}} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \gamma}^{\alpha} \Gamma_{\nu \beta}^{\gamma}-\Gamma_{v \gamma}^{\alpha} \Gamma_{\mu \beta}^{\gamma}$.
The R_{00} Ricci equation is
$R_{00}=R_{000}^{0}+R_{010}^{1}+R_{020}^{2}+R_{030}^{3}$,
and the pertinent Riemann tensors are:
$R_{00}=0$,
$R_{010}^{1}=0-\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a}\right)+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{\dot{a}}{a}\right)^{2}=\left(\frac{\dot{a}}{a}\right)^{2}-\frac{\ddot{a}}{a}$,
$R_{020}^{2}=0-\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a}\right)+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{\dot{a}}{a}\right)^{2}=\left(\frac{\dot{a}}{a}\right)^{2}-\frac{\vec{a}}{a}$,
$R_{030}^{3}=0-\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a}\right)+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{\dot{a}}{a}\right)^{2}=\left(\frac{\dot{a}}{a}\right)^{2}-\frac{\vec{a}}{a}$.
$\rightarrow R_{00}=-3\left[\frac{\ddot{a}}{a}-\left(\frac{\dot{a}}{a}\right)^{2}\right]$.
The R_{11} Ricci equation is
$R_{11}=R_{101}^{0}+R_{111}^{1}+R_{121}^{2}+R_{131}^{3}$,
and the pertinent Riemann tensors are:
$R_{101}^{0}=\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a}\right)-0+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{a}{a}\right)^{2}=\frac{a}{a}-\left(\frac{\dot{a}}{a}\right)^{2}$,
$R_{111}^{1}=0$,
$R_{121}^{2}=0-\left(\frac{-1}{r^{2}}\right)+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{1}{r^{2}}\right)=\left(\frac{\dot{a}}{a}\right)^{2}$,
$R_{131}^{3}=0-\left(\frac{-1}{r^{2}}\right)+\left(\frac{\dot{a}}{a}\right)^{2}-\left(\frac{1}{r^{2}}\right)=\left(\frac{\dot{a}}{a}\right)^{2}$.
$\rightarrow R_{11}=\left[\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}\right]$.
The R_{22} Ricci equation is
$R_{22}=R_{202}^{0}+R_{212}^{1}+R_{222}^{2}+R_{232}^{3}$,
and the pertinent Riemann tensors are:
$R_{202}^{0}=\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a} r^{2}\right)-0+\left(\frac{\dot{a}}{a}\right)\left(\frac{\dot{a}}{a} r^{2}\right)-\left(\frac{\dot{a}}{a} r^{2}\right)\left(\frac{\dot{a}}{a}\right)=\left[\frac{a}{a}-\left(\frac{\dot{a}}{a}\right)^{2}\right] r^{2}$,
$R_{212}^{1}=\frac{\partial}{\partial x^{1}}(-r)-0+\left(\frac{\dot{a}}{a}\right)\left(\frac{\dot{a}}{a} r^{2}\right)-(-r)\left(\frac{1}{r}\right)=\left(\frac{\dot{a}}{a}\right)^{2} r^{2}$,
$R_{222}^{2}=0$,
$R_{232}^{3}=0-\frac{\partial}{\partial x^{2}} \cot \theta+\left[\left(\frac{\dot{a}}{\frac{a}{a}}\right)\left(\frac{\dot{a}}{a} r^{2}\right)+\left(\frac{1}{r}\right)(-r)\right]-\cot ^{2} \theta$,
$=\csc ^{2} \theta+\left(\frac{\dot{a}}{a}\right)^{2} r^{2}-1-\cot ^{2} \theta=\left(\frac{\dot{a}}{a}\right)^{2} r^{2}$.
$\rightarrow R_{22}=\left[\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}\right] r^{2}$.
The R_{33} Ricci equation is
$R_{33}=R_{303}^{0}+R_{313}^{1}+R_{323}^{2}+R_{333}^{3}$,
and the pertinent Riemann tensors are:
$R_{303}^{0}=\frac{\partial}{\partial x^{0}}\left(\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta\right)-0+\left(\frac{a}{a}\right)\left(\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta\right)-\left(\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta\right)\left(\frac{\dot{a}}{a}\right)=$
$\left[\frac{\square \ddot{a}}{a}-\left(\frac{\dot{a}}{a}\right)^{2}\right] r^{2} \sin ^{2} \theta$,
$R_{313}^{1}=\frac{\partial}{\partial x^{1}}\left(-r \sin ^{2} \theta\right)-0+\left(\frac{\dot{a}}{a}\right)\left(\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta\right)-\left(-r \sin ^{2} \theta\right)\left(\frac{1}{r}\right)=\left(\frac{\dot{a}}{a}\right)^{2} r^{2} \sin ^{2} \theta$,
$R_{323}^{2}=\frac{\partial}{\partial x^{2}}(-\sin \theta \cos \theta)-0+\left[\left(\frac{\dot{a}}{a}\right)\left(\frac{\dot{a}}{a} r^{2} \sin ^{2} \theta\right)+\left(\frac{1}{r}\right)\left(-r \sin ^{2} \theta\right)\right]-[(-\sin \theta \cos \theta)(\cot \theta)]$
$=\left(-\cos ^{2} \theta+\sin ^{2} \theta\right)+\left(\frac{a}{a}\right)^{2} r^{2} \sin ^{2} \theta-\sin ^{2} \theta+\cos ^{2} \theta=\left(\frac{a}{a}\right)^{2} r^{2} \sin ^{2} \theta$,
$R_{333}^{3}=0$.
$\rightarrow R_{33}=\left[\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}\right] r^{2} \sin ^{2} \theta$.

The Ricci scalar is:
$R=R_{0}^{0}+R_{1}^{1}+R_{2}^{2}+R_{3}^{3}$.
$R=-\frac{1}{a^{2}}\left[-3 \frac{a}{a}+3\left(\frac{\dot{a}}{a}\right)^{2}\right]+\frac{1}{a^{2}}\left[\frac{a}{a}+\left(\frac{a}{a}\right)^{2}\right]+\frac{1}{a^{2} r^{2}}\left[\frac{a}{a}+\left(\frac{a}{a}\right)^{2}\right] r^{2}+\frac{1}{a^{2} r^{2} \sin ^{2} \theta}\left[\frac{a}{a}+\left(\frac{\dot{a}}{a}\right)^{2}\right] r^{2} \sin ^{2} \theta$
$=6 \frac{\vec{a}}{a^{3}}$.

